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Role of stable modes in zonal flow regulated turbulence
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Zonal flows are shown to regulate ion temperature gradient turbulence by enabling efficient energy

transfer from the instability to a damped eigenmode in the unstable wavenumber range. The

damped mode also saturates turbulence when zonal flows are not active in saturation dynamics, for

example, in electron temperature gradient turbulence, but the transfer from unstable to stable mode

is less efficient and requires a larger amplitude to balance the instability drive. From numerical

solutions of a fluid model with a single damped eigenmode, an eigenmode decomposition of the

nonlinear evolution shows that the dominant energy transfer involves the triplet correlation of the

unstable mode, the zonal flow, and the stable mode at three wavenumbers satisfying k ¼ k0 þ k00. In

this triplet, nearly all of the energy from the instability goes to the damped mode. The very small

fraction going to the zonal flow is balanced by small zonal flow damping. This combination of

unstable mode, zonal flow, and stable mode minimizes the nonlinear frequency mismatch and

avails itself of large coupling strengths associated with the zonal flow. VC 2012 American Institute
of Physics. [http://dx.doi.org/10.1063/1.4729906]

I. INTRODUCTION

Recently, it has been found that damped modes are im-

portant energy sinks in the saturation of many types of

instability-driven plasma turbulence.1–3 These modes are ze-

ros of the linear dispersion relation with negative growth

rate. They can be represented by fluctuation decompositions,

including proper orthogonal decomposition.4 Two features

of the damped modes are striking: (1) they robustly damp

fluctuation energy at the same scales as the instability, typi-

cally in the large scale range where the turbulent spectrum

peaks and (2) nonlinearity, in the form of three-wave cou-

pling, drives all damped modes available to the system.5 In

two-field fluid models, there is one damped mode and one

unstable mode, both of which are functions of wavenumber

from large to small scales.1 In gyrokinetics there are in prin-

ciple an infinite number of damped modes spanning direc-

tions of inhomogeneity in phase space. Under numerical

discretization, the number becomes finite but very large

[O(104) for typical resolutions].3 Whether the number of

damped modes is one or many, certain aspects of the satura-

tion are qualitatively the same. Damped modes dissipate

energy at a rate that is comparable to the rate of energy

injected by the instability. The dissipation peaks in the same

wavenumber range as the instability. If the damped modes

are artificially removed, the saturation level increases by at

least an order of magnitude.6 This set of features has been

observed for a diverse collection of turbulent systems.1 One

of the most widely studied systems is ion temperature gradi-

ent (ITG) turbulence, where the above described features

have been found in two- and three-field fluid systems1,5,7 and

gyrokinetic representations.3

ITG turbulence is known to involve zonal flows in its

saturation.8,9 When the coupling to zonal flows is artificially

suppressed, fluctuation levels increase significantly, typically

by an order of magnitude.10 The reason for this effect is

typically held to be the suppressive effect of flow shear.11,12

Shearing is an aspect of advection, which is inertial and

unable to dissipate energy directly. Rather, shearing enhances

inertial energy transfer to small scales,13 which are thought to

have stronger collisional dissipation. Although this can and

does help in saturation of ITG, dissipation by damped modes

can be a much more important factor in the energy balance of

saturation. Damped modes remove energy from the turbu-

lence in two ways. First, they drive a negative heat flux, put-

ting energy back into the temperature gradient. Second, they

remove energy through the viscous and diffusive dissipation

terms. The first effect, which counters the outward heat flux

driven by the linear instability, is not irreversible. The second

effect is. However, since both remove energy from the fluctu-

ations, both will be referred to as “energy dissipation by

stable eigenmodes.” Also, the words “stable modes” and

“damped modes” will be used interchangeably. Dissipation

due to damped modes is strongest in the large-scale range

where instability growth rates are largest.3 Damped eigenmo-

des in this range remove most of the energy injected by the

instability and saturate it, making transfer to high k a second-

ary player in saturation physics. Damped eigenmodes have

not been accounted for in describing the effect of zonal flows

on ITG turbulence. Likewise, the description of the saturation

of ITG turbulence by damped modes has not studied the role

of zonal flows in saturation.1 This paper investigates the inter-

action of zonal flows and damped modes in the saturation of

ITG turbulence.

We explicitly track nonlinear energy transfer between

all types of fluctuations in a simple model for ITG turbulence

introduced by Holland et al.14 The fluctuations include the

linearly unstable eigenmode, the linearly stable eigenmode, a

zonal flow (ikx/ky¼0 where / is the electrostatic potential),

and a zonal pressure (the ky ¼ 0 component of the pressure).

Nonlinear energy transfer rates between these components
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can be measured in numerical simulations. The energy trans-

fer channels are sufficiently simple and transparent to allow

a clear picture of what happens in saturation. Similar analy-

sis for gyrokinetics is under way and will be reported

elsewhere.

The saturation of the instability has two distinct stages.

In the first, the linearly unstable mode pumps both zonal

fields (pressure and flow) and the damped eigenmode by a

parametric instability process.6 Zonal fields and damped

eigenmodes grow at a rate that is independent of their ampli-

tudes. The growth rate is effectively the sum of the linear

growth rates of two beating wavenumbers of the unstable

mode in the region of fastest linear growth. This mechanism

is only efficient when the fastest growing mode dominates

the spectrum, and when the amplitudes of the damped mode

and zonal fields are small. Later, when these conditions are

not met, phase mixing between a larger number of unstable

modes at different wavenumbers and damped modes reduces

the efficiency of this energy transfer channel. At this point,

the second saturation stage takes over. With the zonal flow

and pressure at finite amplitude, a triplet interaction of the

unstable mode, the stable mode, and either of the zonal fields

is found to have the smallest triplet complex frequency of

any of the three-wave combinations possible. The result is a

very long nonlinear interaction time and a highly efficient

energy transfer channel from the unstable mode to the stable

mode, via the zonal fields. The coupling coefficients of inter-

actions with the zonal flow are larger than those with zonal

pressure, with the amplitudes of zonal pressure and zonal

flow being comparable. In the triplet interaction of the unsta-

ble mode, the zonal flow, and the stable mode, virtually all

of the energy passing from the unstable mode is deposited on

the stable mode, with less than 1% deposited on the zonal

flow. Weak collisional damping easily balances the small

amount of energy deposited into the zonal flow, providing

saturation of the zonal flow. The first saturation stage corre-

sponds to the large overshoot of fluctuation level typically

observed in simulations.15,16 The second stage is the time-

asymptotic saturated state. The process described above is

distinct from the shearing mechanism, as evident in the mini-

mum complex frequency condition that characterizes the

dominant energy transfer channel. With this mechanism, the

zonal flow instead acts as a catalyst through its nonlinear fre-

quency to allow very efficient large-scale energy transfer

from the instability to the damped eigenmode.

This paper is organized as follows. Section II describes

the model, the decomposition into linear eigenmodes and

zonal fields, and the coupling coefficients in the decomposi-

tion. In Sec. III numerical solutions are presented. Section IV

discusses the triplet frequency, coupling coefficients, zonal

field amplitudes, and their role in the dominant energy transfer

channel. Conclusions are given in Sec. V.

II. TWO-FIELD ITG MODEL AND STABLE MODE
ANALYSIS

We study a 2D two-field fluid model that describes both

ITG and electron temperature gradient (ETG) turbulence.14

The equations are

@pk

@t
þ ikyð1þ gÞ/k þ vk4pk

¼ � 1

2

X
k0
ðk0 � ẑ � kÞ½/k0pk�k0 � /k�k0pk0 �; (1)

½dðkyÞ þ k2� @/k

@t
þ iky/k � iky�pk þ �k2/k

¼ � 1

2

X
k0
ðk0 � ẑ � kÞ½ðk � k0Þ2 � k

02�/k0/k�k0 ; (2)

where pk and /k are Fourier amplitudes of pressure and elec-

trostatic potential, � and v are coefficients of collisional dis-

sipation, g is the ratio of density to temperature gradient

scale lengths, and � is the ratio of density gradient scale

length to magnetic field variation scale length. The spatial

coordinates are normalized to q and time is normalized to

Lref =uref . The symbol q represents the electron gyroradius

for the ETG turbulence case and the ion sound gyroradius

for the ITG turbulence case. The symbol Lref represents the

density gradient scale length and uref is vTe for ETG and cs

for ITG. To set the model for ETG turbulence, d ¼ 1 for all

ky. For ITG,

dðkyÞ ¼
1 if ky 6¼ 0

0 if ky ¼ 0:

�

Poloidally symmetric ky ¼ 0 fluctuations are referred to as

zonal fields. In this model, there are two zonal fields, namely,

the zonal flow vzðkxÞ ¼ ikx/ky¼0 and the zonal pressure pky¼0.

There is a zonal flow and pressure for both the ETG and ITG

cases. In the ITG case where dðkyÞjky¼0 ¼ 0, the potential

equation can be rewritten as an equation for zonal flow

_vz þ �vz ¼ ð�i=2Þ
X

k0
k0y½ðkx � k0xÞ

2 � k0x
2�/k0/k�k0 : (3)

In the ETG case the equation for vz is

_vz þ �k2
xð1þ k2

xÞ
�1vz ¼ð�i=2Þ

X
k0

k0y k2
xð1þ k2

xÞ
�1

� ½ðkx � k0xÞ
2 � k0x

2�/k0/k�k0 : (4)

For the energy containing scales kx � 1. Thus, the nonlinear

coupling to the zonal flow is stronger by a factor k�2
x in

the ITG case than in its ETG counterpart. Since transfer to

ky ¼ 0 is already favored when damped eigenmodes are

present,17 the zonal flow is strongly excited. The zonal flow

brings down the level of turbulence and reduces ion-channel

transport. This is shown in Fig. 1, where the turbulent energy

in the ITG case is almost two orders of magnitude smaller

than the ETG case. The definition of energy is given later.

The linear dispersion relation yields two eigenfrequen-

cies given by

x1;2 ¼�
i

2
vk4 þ �k2 þ iky

dþ k2

� �

6
i

2
vk4 � �k2 þ iky

dþ k2

� �2

þ
4ð1þ gÞk2

y�

dþ k2

( )1=2

: (5)
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We consider the regime of weak collisionality vk4; �k2 �
ky

ffiffiffiffiffi
g�
p

, where 0 < ky < 1. This is a regime of robust linear

instability. In this regime, an expansion of the radical shows

that the two eigenfrequencies are nearly complex conjugates,

with the deviation proportional to the collisionalities,

x1;2 �
ky

2ðdþ k2Þ 6 iky
ð1þ gÞ�
dþ k2

� �1=2

� i

2

�k2

ðdþ k2Þ �
i

2
vk4:

(6)

As a near conjugate to the unstable eigenmode x1, the sec-

ond eigenmode x2 is damped. Moreover, with jIm x2j
� jIm x1j, the damped eigenmode satisfies the condition for

strong excitation5 and dissipates energy at a rate that is com-

parable to the energy injection rate of the instability.1 For

ky ¼ 0, the eigenfrequencies reduce to

x1 ¼ �i�k2
x=ðdþ k2

xÞ; (7)

x2 ¼ �ivk4
x : (8)

We observe from Eqs. (1) and (2) that setting ky ¼ 0 diago-

nalizes the linear part of the equations. Hence pressure and

potential are the eigenmodes at ky ¼ 0. (Away from ky ¼ 0,

the eigenmodes are linear combinations of pressure and

potential given below.) For convenience, we label the fre-

quencies of the ky ¼ 0 flow and pressure as, respectively, x1

and x2, irrespective of whether ðvk4
x � �k2

x=ðdþ k2
xÞÞ is posi-

tive or negative. This is a labeling convention for ky ¼ 0 and

does not change the results of this paper in any way. For the

ITG case, the zonal flow damping rate is ��.

To track the amplitudes of the unstable and damped

modes, we introduce the eigenmode decomposition,1

pk

/k

� �
¼ b1ðkÞ

R1ðkÞ
1

� �
þ b2ðkÞ

R2ðkÞ
1

� �
; (9)

where ½R1ðkÞ; 1� and ½R2ðkÞ; 1� are the eigenvectors of the

unstable and stable modes, b1ðkÞ and b2ðkÞ are the mode

amplitudes, and

R1;2 ¼
�x1;2ðdþ k2Þ þ ky � i�k2

ky�
: (10)

Evolution equations for the amplitudes b1ðkÞ and b2ðkÞ are

found by inverting Eq. (9) and taking the time derivative.5

This procedure diagonalizes the linear coupling of the evolu-

tion equations, while mixing the nonlinearities.

It is helpful to explicitly break out the ky ¼ 0 component

of the evolution from the ky 6¼ 0 components, writing the

evolution equations as two equations for _b1ðkÞjky 6¼0 and

_b2ðkÞjky 6¼0 and two equations for _pkjky¼0 and _/kjky¼0. The

evolution equations are

_bl þ ixlbl ¼
X

k0yðk0y 6¼0;kyÞ
½Clmnb

0
mb00n �

þ
X

k0x

�
½ClFnv

0
zb
00
n þ ClPnp0zb

00
n �jk0y¼0

þ ½ClmFb0mv00z þ ClmPb0mp00z �jk0y¼ky

	
; (11)

_vz þ
�k2

x

ðdþ k2
xÞ

vz ¼
X

k0x

½CFmnb
0
mb00n �jky¼0; (12)

_pz þ vk4
x pz ¼

X
k0x

½CPmnb
0
mb00n �jky¼0; (13)

where l;m; n ¼ 1 or 2 and the Einstein convention is used to

imply summation over repeated indices. A shorthand notation

is introduced as follows: b1;2 ¼ b1;2ðkÞjky 6¼0, b01;2 ¼ b1;2ðk0Þ
jk0y 6¼0, b001;2 ¼ b1;2ðk � k0Þjk0y 6¼ky

, vz ¼ ikx/kjky¼0, v0z ¼ ik0x/k0

jk0y¼0, v00z ¼ iðkx � k0xÞ/k�k0 jk0y¼ky
, pz ¼ pkjky¼0, p0z ¼ pk0 jk0y¼0,

and p00z ¼ pk�k0 jk0y¼ky
. The coupling coefficients Clmn, ClFn,

ClPn, ClmF, ClmP, CFmn, and CPmn are functions of the nonlinear

coefficients of Eqs. (1) and (2) and the eigenvector components

R1 and R2. Their precise forms are given in the Appendix.

Equations (11)–(13) can be recast as energy equations

by multiplying by b�l , v�z , and p�z , respectively, and adding

the complex conjugate equations. Energy transfer channels

available to the system are associated with various cou-

pling coefficients. Turbulent energy enters the system

through jb1j2 at low k, and energy transfer channels lead

from this source to the sinks, the largest of which is jb2j2
at low k. jb1j2 and jb2j2 at high k are also sinks, but energy

must cascade through a progression of wavenumbers to

reach large k. Energy passes directly from b1 to b2, with-

out any intermediate zonal fields, through terms with coef-

ficients C112, C121, C122, C211, C212, and C221. Energy

cascades to large k within a single eigenmode branch

through the terms with C111 and C222. The terms with C1F2,

C12F, C2F1, C21F, CF12, and CF21 govern the passage of

energy from b1 to b2 through the intermediary of the zonal

flow. The terms with C1P2, C12P, C2P1, C21P, CP12, and CP21

govern the passage of energy from b1 to b2 through the

zonal pressure. The relative strengths of these channels are

governed by the magnitudes of coupling coefficients and

by the triplet correlations of the energy equations, as

detailed in Sec. IV.
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FIG. 1. The total turbulent energy in the ITG case is significantly reduced

compared to the ETG case.
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III. ENERGY TRANSFER TO STABLE MODES VIA
ZONAL FLOWS

To examine nonlinear energy transfer, we introduce the

energy, defined as,

E ¼
X

k

½ðdþ k2Þj/kj2 þ jpkj2�: (14)

The rate of change of the total energy can be expressed as

dE

dt
¼ Qu þ Qs þ Qus þ Dþ Dzonal; (15)

where Qu is the rate of change of energy due to unstable

modes, Qs is the rate of energy removed by stable modes,

and Qus is the rate of change of energy due to cross terms

of unstable and stable modes. The sum of these terms is

related to the turbulent heat transport flux by

QuþQsþQus¼�ð1þgþ�ÞQ, where Q¼�
P

k kyImð/�kpkÞ
is the heat flux. D is high-wavenumber dissipation for nonzo-

nal modes, and Dzonal is the linear energy damping rate of the

zonal modes. These terms can be derived by substituting

Eqs. (1) and (2) in the time derivative of Eq. (14). They are

given in the Appendix. These quantities are plotted in Fig. 2

for the ETG case. We see that Qu is large and positive. It is

balanced by a large and negative Qs, which shows saturation

by stable modes. Qus is small (not visible in the plot) and

negative, and helps balance Qu. It should be noted that while

Qus equally derives from stable and unstable modes, it van-

ishes in any calculation that ignores the stable modes. The

role of viscous dissipation D is considerably smaller than the

dissipation Qs of stable modes, and dissipation by the zonal

modes is negligible. The ETG turbulence in Fig. 2 has not

actually saturated at the end of the simulation run. While the

addition of artificial damping at low k does lead to saturation,

the behavior seen in Fig. 2 (Qu	jQsj
jQusj;D) remains

unchanged.

A numerical experiment shows how zonal flows reduce

the level of turbulence. A simulation is started in the ETG

case. It is allowed to reach a saturated state. At time 400, the

equations are switched to the ITG case by changing the pa-

rameter d. In some sense, this mimics a transition from a low

confinement regime to a high confinement regime induced

by turbulence-driven sheared flows.14,18 The turbulence level

is reduced after t ¼ 400. What causes this change in energy?

The rate of change of energy, dE=dt, becomes sharply nega-

tive after t ¼ 400. We see from Eq. (15) that dE=dt has a net

drive from Qu þ Qs þ Qus and net dissipation Dþ Dzonal.

Fig. 3 shows that as zonal flows are turned on, the viscous

dissipation D shows only a slight transient increase and then

a decrease. The zonal dissipation Dzonal remains small. How-

ever, the sum Qu þ Qs þ Qus decreases drastically in magni-

tude. The sum Qu þ Qs þ Qus is the difference between

energy injected by the instability and dissipated by damped

modes. This residual must be dissipated by the only other

sink, namely, viscous dissipation. Consequently viscous dis-

sipation does not increase (the way it would if there were

enhanced energy transfer to small scale) but it decreases to

match the reduced residual energy input Qu þ Qs þ Qus. The

reduced input makes dE=dt negative and brings the energy

down. It is also observed that the level of zonal flows

increases. However, the fraction of instability energy depos-

ited into the zonal flow remains very small and is removed

by zonal flow damping, as shown in Fig. 4. This figure shows

that most of the instability energy is damped by the stable

modes, with the zonal flow acting as a crucial mediator for

the energy transfer from unstable to stable modes.

Decomposing the pressure and potential fields into the

linear eigenmode amplitudes, the energy dependence on the

four fields of Eqs. (11)–(13) is given by

E ¼
X
ky 6¼0

½ð1þ k2 þ jR1j2Þjb1j2 þ ð1þ k2 þ jR2j2Þjb2j2

þ 2ð1þ k2ÞRehb�1b2i þ 2RehR�1b�1R2b2i�
þ
X
ky¼0

½jpkj2 þ ðdþ k2Þj/kj2�: (16)
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FIG. 2. The rate of change of energy in the ETG case, divided into various

components as defined in Eq. (15).
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FIG. 3. The net heat flux (drive) Qu þ Qs þ Qus, the high k dissipation D,

and the dissipation at zonal wavenumbers Dzonal when the zonal flows are

“turned on” at time t ¼ 400. The zonal flows are turned on by changing

dky¼0 from 1 to 0.
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The energy in the unstable modes corresponds toP
ky 6¼0ð1þ k2 þ jR1j2Þjb1j2. Taking a derivative and substi-

tuting from Eq. (11), the rate of change of energy of the

unstable modes is

@

@t

X
ky 6¼0

ð1þk2þjR1j2Þjb1j2
2
4

3
5

¼
"X

ky 6¼0

2ð1þk2þjR1j2Þc1jb1j2
#
þN111þN112þN121

þN122þN1P1þN1P2þN11PþN12PþN1F1

þN1F2þN11FþN12F: (17)

The term c1jb1j2 is the linear instability energy input rate,

where c1 is the growth rate of the unstable mode. The terms

labelled by N represent the three wave coupling terms. Their

forms are given in the Appendix. The term N111 signifies cou-

pling between the unstable mode b1ðkÞ with two other unsta-

ble modes at k0 and k00. The terms N112 and N121 represent

coupling of the unstable mode with another unstable and one

stable mode. The term N122 represents coupling of the unsta-

ble mode with two stable modes. The remaining terms

N11P; N1P1; N12P; N1P2; N1F1; N11F; N1F2, and N12F are

couplings of the unstable mode with a zonal field (zonal pres-

sure or zonal flow) and a second mode, either unstable or sta-

ble. These last eight terms can be grouped together as

coupling of the unstable mode with a zonal field and either a

stable or unstable mode. The four groups of coupling terms

just described are plotted in Fig. 5, which shows both the

ETG and ITG cases. The curve labelled c1jb1j2 is the linear

energy injection rate (Rky 6¼0 2ð1þ k2 þ jR1j2Þc1jb1j2). It is

balanced by the nonlinear energy transfer terms. In the ETG

case, all four groups of nonlinear terms play approximately

equal roles in saturating the linear instability. In the ITG

case, the group involving couplings with a zonal field is the

most important term for saturation of the instability. This

indicates that zonal fields play a prominent role in saturating

turbulence in the case of ITG. The zonal fields include both

zonal pressure and zonal flow, so it is important to ask what

role each field individually plays in saturation. Also, in the

couplings with a zonal field, only one mode of the triad is a

zonal field, the other mode being either a stable or an unstable

nonzonal mode. Hence, it is important to ask about the pro-

portion of energy transferred to the zonal field compared to

the energy transferred to the nonzonal mode.

To answer these questions, we separate the group

involving one zonal field into four subgroups. They are cou-

plings with (1) zonal pressure and an unstable mode (N11P

þN1P1), (2) zonal pressure and a stable mode (N12P þ N1P2),

(3) zonal flow and an unstable mode (N11F þ N1F1), and (4)

zonal flow and a stable mode (N1F2 þ N12F). These terms are

plotted in Fig. 6. This figure is for the ITG case, where the

zonal field coupling terms are the most important. Two sets

of nonlinear terms dominate. The first is the coupling

between the unstable mode at k, a zonal flow, and a second

unstable mode (N11F þ N1F1). This term is positive, which

means that energy is flowing into unstable modes from this

term. Since this energy transfer is summed over all nonzonal

wavenumbers, the net transfer of energy between the unsta-

ble mode at k and the unstable mode at either k0 or k00 should

cancel out. Consequently, the energy transfer N11F þ N1F1 is

coming entirely from the zonal flow. For comparison with

other transfer rates, we note that N11F þ N1F1 has a value of

approximately 1900 at time t¼ 400. The second dominant

set of nonlinear terms represents coupling with a zonal flow
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tion of time. (a) is for ETG case and (b) is for ITG case. The legend is the

same for both plots.
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and a stable mode (N12F þ N1F2). This set of terms has a

value of �3100 at t¼ 400, making it larger than N11F þ N1F1

and negative. This means that this energy transfer is going

out of the unstable modes. Some portion of this energy trans-

fer goes into zonal flows. This portion is necessarily larger

than N11F þ N1F1 because, as we will see later, the zonal

flow receives net energy from the unstable mode. The energy

transfer N11F þ N1F1 thus recirculates within the unstable

mode, through the intermediary of the zonal flow. The re-

mainder of the energy transfer N12F þ N1F2 from the unstable

mode goes into stable modes.

These transfers are depicted schematically in Fig. 7(a).

The transfer N11F þ N1F1 is represented by an arrow flowing

into the unstable modes from the zonal flow. The portion of

N12F þ N1F2 that goes into zonal flows is represented by

N1!F. The portion that flows into the stable modes is repre-

sented by N1!2. N1!F and N1!2 are taken as positive quanti-

ties. Therefore, the portions N1!F þ N1!2 add up to �N12F

�N1F2. It is not possible to determine N1!F and N1!2 sepa-

rately from this information alone. To estimate them, we

need to look at the energy dynamics of the zonal flow. The

energy equations for the zonal fields are (for ITG case)

X
ky¼0

@

@t
ðjpkj2Þ¼

"X
ky¼0

�2vk4jpkj2
#
þNP11þNP12þNP21þNP22;

(18)

X
ky¼0

@

@t
ðk2

x j/kj2Þ¼
"X

ky¼0

�2�k2
x j/kj2

#
þNF11þNF12þNF21þNF22:

(19)

The terms containing v and � represent linear damping of the

zonal pressure and flow, respectively. The terms labelled N
are again the various nonlinear couplings of the zonal fields,

which couple only with nonzonal wavenumbers. Following

the usual notation, NPðFÞ1ð2Þ1ð2Þ represents coupling of the

zonal pressure (flow) with an unstable (stable) mode at k0

and an unstable (stable) mode at k–k0. These terms, which

are given in the Appendix, are plotted in Fig. 8.

The dynamics of the zonal pressure shows that it

receives energy from unstable modes through NP11 and satu-

rates by transferring the energy to stable modes through
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FIG. 7. A cartoon showing the nonlinear energy transfer rates for the unsta-

ble mode (a) and the zonal flow (b).
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NP22. The linear damping of zonal pressure plays a small

role in its energetics. However, the zonal flow dynamics

shows a strikingly different balance. The zonal flow receives

energy equally from unstable modes through NF11 and stable

modes through NF12 þ NF21 and NF22, with saturation pro-

vided by its linear damping. This is schematically shown in

Fig. 7(b). All the nonlinear terms NF11;NF12 þ NF21, and

NF22 are shown to be supplying energy to the zonal flow,

with only linear damping providing saturation. The energy

transfer to zonal flows is also seen to be much smaller than

the transfer to zonal pressure. The y axis scale of Fig. 8(b)

can be compared to that of Fig. 6. We see that the net trans-

fer into the zonal flow from unstable mode (NF11) is approxi-

mately only 2, compared to a value of 1900 for energy

transfer from zonal flow to unstable mode (N1F1 þ N11F) at

t¼ 400.

Looking at Fig. 7, we can say that NF11 ¼ N1!F

�ðN1F1 þ N11FÞ. Since NF11 � ðN1F1 þ N11FÞ from the

above comparison, we can conclude that N1!F only exceeds

N1F1 þ N11F by a quantity of order 1, i.e., by 0.1%. Given

that �ðN12F þ N1F2Þ ¼ N1!F þ N1!2 and that N1!F is

within 0.1% of N1F1 þ N11F, we can further say that N1!2 �
�ðN12F þ N1F2 þ N1F1 þ N11FÞ within a percent. This is

shown in Fig. 9. This figure shows that N111; N112

þN121; N122, and N11P þ N1P1 þ N12P þ N1P2 are small, and

that N1F1 þ N11F þ N1F2 þ N12F, which is equal to N1F1

þN11F � jN1F2 þ N12Fj � �N1!2, is the only significant net

energy transfer term for the unstable-mode energetics with a

value of �1250 at t¼ 400. Recall that N1!2 was defined as

the energy transferred from the unstable to stable mode via

three wave couplings that have a zonal flow as the third term

in the interaction triplet. Thus, the net energy transfer dynam-

ics in the equation for jb1j2 is dominated by transfer to the

damped eigenmode, with zonal flows acting as a mediator, or

a catalyst, of energy transfer from the unstable to stable mode.

The energy transfer rates just described, including the

small rates NF11 and equivalent differences of large rates like

N1!F � ðN1F1 þ N11FÞ, are well outside the putative error

bars associated with numerical effects that break energy

conservation. Observing energy dynamics with growth

and damping terms turned off establishes that the rate of

non-conservation of energy due to numerical effects is of

order of 10�7% of the zonal flow damping. Since zonal flow

damping orders the smallest energy transfer processes

tracked in this paper, numerical error does not effect any of

the energy transfer rates described above.

The above analysis showing that instability energy is

transferred dominantly to the damped mode does not charac-

terize or quantify concomitant energy transfer in wavenumber

space. As shown in Fig. 4, the ratio of viscous dissipation,

which is active at high wavenumber, to dissipation by stable

modes summed over the entire wavenumber range, is smaller

than 10%. Most of this wavenumber range is unstable because

the high k wavenumber range with c1 < 0 is limited for simu-

lation configurations consistent with earlier work.14 Hence we

have looked at the ratio of energy transfer out of a low k
wavenumber range, which is smaller than a quarter of the

unstable range, to the rate of dissipation within that range.

The ratio remains less than 20%, implying dominant energy

transfer is to stable modes within the unstable wavenumber

range. We expect that the ratio of energy transferred to high k
relative to energy dissipated by damped modes at low k can

vary from model to model, with the present simulations yield-

ing very low values. However, the general result that ITG sat-

uration and transport in numerical models is essentially

independent of the wavenumber resolution much beyond the

instability range indicates that energy dissipation by damped

modes in the instability range is significant in all cases.

To further probe this result, we have used bispectral

analysis to look at energy transfer between selected wave-

numbers, similar to the study done in Ref. 19. This is shown

in Fig. 10 which plots the nonlinear transfer function for

eigenmodes at different wavenumbers. The exact quantity

plotted in Figs. 10(a), 10(b), and 10(d) is

N1kðk0Þ ¼ ARe½C1mnb
�
1b
0
mb00njk0y 6¼0;ky

þ C1Pnb
�
1p0zb

00
njk0y¼0

þ C1mPb�1b
0
mp00z jk0y¼ky

þ C1Fnb
�
1v
0
zb
00
njk0y¼0

þ C1mFb�1b
0
mv00z jk0y¼ky

�; (20)

averaged over the saturated state. The terms in the equation

are explained in the Appendix. Effectively, it is the sum of

nonlinear energy transfer out of/into the unstable mode at

wavenumber k via coupling with modes k0 and k–k0. The

quantity shown in Fig. 10(c) is the same except for wherever

1 appears, it is replaced by 2, i.e., the energy transfer out of/

into the stable mode at wavenumber k. In Fig. 10, different

k’s are chosen and the nonlinear energy transfer spectrum

over k0 is plotted. Fig. 10(a) is for the unstable mode at

k¼ (0,0.2). It shows a strong coupling with a zonal flow k0

¼ (�0.08,0) and as a result, strong energy transfer to

k–k0 ¼ (0.08,0.2). In Fig. 10(b), we look at the unstable mode

at k¼ (0.08,0.2). Again it shows strong coupling with the

zonal flow at k0 ¼ (�0.08,0) to give energy to k–k0 ¼
(0.16,0.2). It should be noted that the sign of energy transfer

to mode (0,0.2) is still negative, indicating the unstable

mode at (0.08,0.2) gives some energy back to the (0,0.2)

mode. Taking a look at the nonlinear transfer of the stable
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mode at k¼ (0.08,0.2) in Fig. 10(c), we see that it receives

energy from mode (0,0.2). This is most of the energy seen in

Fig. 10(a) going from the unstable mode at (0,0.2) to mode

(0.08,0.2). Thus, the transfer to higher wavenumber is

actually transfer to stable modes at higher wavenumber. Fig.

10(d) shows nonlinear transfer for a high wavenumber

(0.4,0.2) that is still in the unstable range. The magnitude of

nonlinear transfer has reduced by more than a factor 10 com-

pared to Fig. 10(a). This is because at every step of energy

transfer to higher wavenumber, significant energy is lost to

the stable modes.

We turn now to the question of how zonal flows and sta-

ble modes are initially excited. In the linear stage, both zonal

flows and stable modes are damped and their amplitudes

decrease. At the beginning of the nonlinear stage, both of

these are excited by parametric excitation, i.e., by the beating

of two unstable modes at different wavenumbers.6 This stage

corresponds to the large overshoot of fluctuation level typi-

cally observed in simulations.15,16 Once the zonal flow and

stable modes reach a finite amplitude, the stable branch is

maintained at a finite amplitude by nonlinearly coupling

with both the unstable modes and zonal flows. At the same

time, the zonal flow is pumped by both the unstable and sta-

ble modes. This stage corresponds to the saturated phase of

the simulations. Both stages are shown in Fig. 11. In this fig-

ure, the rate of change of energy of the stable mode is di-

vided by the energy of the stable mode, giving a nonlinear

growth rate. Just as before, the growth rate is classified into

the different coupling terms. For example, c11 is defined as

N211=ð
P

ky 6¼0ð1þ k2 þ jR2j2Þjb2j2Þ, where N211 is the cou-

pling of the stable mode with 2 unstable modes. N211 is

defined like N111 except that the unstable mode at k is

replaced by a stable mode. Similarly, cð12þ21Þ represents cou-

pling with one unstable and one stable mode, and c22 repre-

sents coupling with two stable modes. cZPðFÞ represents

coupling with zonal pressure(flow). From t¼ 0 up to

t ¼ 100Ln=cs, the stable mode is seen to be excited by cou-

pling with two unstable modes. After t ¼ 100Ln=cs, the cou-

pling with one zonal flow and one unstable mode is seen to

dominate. The peak growth rate occurs at t ¼ 12Ln=cs. If we

look at the energy of the stable mode, it initially decays

because it is linearly damped but then increases due to non-

linear coupling. Its steepest growth occurs at t ¼ 12Ln=cs,

corresponding to the peak nonlinear growth rate in Fig. 11.
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We have looked at the energy dynamics of the stable

modes, and they show a similar and consistent result. The

stable modes are also seen to couple primarily with the

unstable modes, with the zonal flows acting as a mediator.

IV. ENERGY TRANSFER IN TRIADS INVOLVING
ZONAL MODES

We examine why energy transferred from unstable to

stable modes through triads involving a zonal flow as a medi-

ator is the preferred energy transfer channel. Consider the

dominant transfer rate N1F2 þ N12F. From the Appendix,

N12F ¼
X
ky 6¼0

2ð1þ k2 þ jR1j2ÞRe
1

R1 � R2

� �
�i

2

� ��

�
X
k0y¼ky

ky R02 þ
R2ðk002 � k02Þ
ð1þ k2Þ

� �
hb�1b02 v00z i

�
; (21)

where N1F2 has the same form with 00 and 0 interchanged.

Like all transfer rates, N12F is governed by a triplet correla-

tion of mode amplitudes and a coupling coefficient. The cou-

pling coefficient is ky½R02 þ R2ðk002 � k02Þ=ð1þ k2Þ�. The

angle brackets of the triplet correlation hb�1b2v
00
z i indicate

that N12F is part of an equation that was averaged by multi-

plication with a complex conjugate. The triplet correlation

has amplitude and phase information, and the latter in partic-

ular contributes critically to the magnitude of N12F. We show

that correlations like hb�1b02v00z i and hb�1b02p00z i, in which one

member is a zonal field and the other members are a stable

and unstable mode, have the smallest frequency sum and

hence the longest interaction time of all possible energy

transfer triplets. We then show that transfer rates involving a

zonal flow (N12F) are larger than transfer rates involving a

zonal pressure (N12P) by virtue of the relative magnitudes of

amplitudes and coupling coefficients.

A. Triplet phase

The correlation hb�1b02v00z i is governed by an evolution

equation that is derived from Eqs. (11) and (12). Starting

from dhb�1b02v00z i=dt ¼ h _b�1b02v00z i þ hb�1 _b
0
2v
00
z i þ hb�1b02 _v00z i, we

substitute for _b
�
1;

_b
0
2 and _v00z from Eqs. (11) and (12) (trans-

posed to the appropriate wavenumber). The result is

d

dt
þ i½x00F þ x02 � x�1�

� 

hb�1v00z b02i ¼ G; (22)

where xF
00 ¼ x1jk0y¼ky

¼ �i� (for the ITG case). The nonli-

nearity G is constructed by multiplying the right hand side of

the complex conjugate of Eq. (11) written for _b
�
1 by b02v

00
z and

adding to similar constructs from the right hand sides of Eqs.

(11) and (12) for _b
0
2 and _v00z , respectively. As such, each term

of G is proportional to quartic correlations. Note that Eq.

(22) is part of the standard correlation hierarchy in turbu-

lence in which the evolution equation of any correlation is

governed by a nonlinearity comprised of correlations of the

next higher order. The equation cannot be solved analytically

to reveal its amplitude and phase dependence without some

sort of closure. The simulation results, which will be detailed

shortly, are well described by closures such as eddy damped

quasi normal Markovian (EDQNM).20 In EDQNM, part of G
is proportional to hb�1b02v00z i and renormalizes the complex tri-

plet frequency to x̂00F þ x̂02 � x̂�1 ¼ x00F þ x02 � x�1 þ Dx00F
þDx02 � Dx�1, where Dxj (j¼ 1, 2, or F) is a nonlinear (am-

plitude-dependent) complex frequency. In the rest of G,

which we label Ĝ, the quartic correlations are expressed as

products of two quadratic correlations. Equation (22) can be

formally integrated to yield

hb�1b
0
2v
00
z i ¼ expf�i½x̂00F þ x̂02 � x̂�1�tg

�

ð t

expfi½x̂00F þ x̂02 � x̂�1�t0gĜdt0:

In the steady state, Ĝ varies on a slower time scale than

½x̂00F þ x̂02 � x̂�1�
�1

, yielding

hb�1b02v00z i ¼
Ĝ

i½x̂00F þ x̂02 � x̂�1�
: (23)

In this form, the frequency mismatch ½x̂00F þ x̂02 � x̂�1� is

clearly the inverse lifetime of the triplet correlation and Ĝ is

the component of the correlation that carries the dependen-

cies on coupling coefficients and amplitudes in the form of

products of quadratic correlations. For a given Ĝ, when the

lifetime is longer, the correlation and N1F2 are larger.

We, therefore, examine the value of x̂00F þ x̂02 � x̂�1,

starting first with the linear component xF
00 þ x02 � x�1. In

this triad k–k0 is a zonal wavenumber, i.e., k0y ¼ ky. Both k
and k0 are nonzonal wavenumbers so that d ¼ 1 in x�1 and

x02. Also, since most of the energy is concentrated in

wavenumbers smaller than unity, we can assume

that k2 � �; v� 1, and ðdþ k2Þ ¼ 1þ Oð�Þ. Then, x00F ¼
�i�; x02 ¼ ky=2 � iky½ð1 þ gÞ��1=2 þ Oð�Þ; x�1 ¼ ky=2

�iky½ð1 þ gÞ��1=2 þ Oð�Þ, and x00F þ x02 � x�1 ¼ Oð�Þ. If

we consider hb�1b02pz
00i, we also have x00P þ x02 �x�1 ¼ Oð�Þ.

However, it is easily verified that any other combination of a

zonal frequency and two nonzonal frequencies, or of three

nonzonal frequencies yields a frequency mismatch that is

order unity instead of order � � 1. Note too that if the zonal

flow damping rate is order unity, the frequency mismatch

also becomes order unity instead of small. Large � removes

an efficiency of energy transfer by shortening the interaction

time, therefore requiring larger amplitudes to match the

instability energy input rate. This mechanism by which zonal

flow damping affects turbulence level is a very different

effect than the idea that large � kills the zonal flow and its

capacity to suppress turbulence via shear.

These analytical predictions can be verified by looking at

the frequency mismatch of exact roots of the dispersion rela-

tion calculated by the simulation. The wavenumber k is arbitra-

rily selected as (�0.08,0.2). Then a scan is done over k0 to see

for which triads (k, k0, k-k0) the frequency mismatch is mini-

mum. In doing this, several combinations of stable and unsta-

ble modes are tested. A triad involves a zonal mode whenever

k0y is either 0.0 or 0.2. First, we look at j� x�1 þ x01 þ x001j.
This is a triad involving three unstable modes. If k0y ¼ 0:0,
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then x01 is taken as �i�, which is the zonal flow damping. If

k0y ¼ 0:2, then x001 is taken as �i�. This is because of Eq. (7)

which shows that the unstable mode maps to the zonal flow.

The scan over k0 is shown in Fig. 12(a). It shows a minimum

value in the regions near k0y values of 0.0 and 0.2. The exact

minimum value is 0.139 at k0 ¼ (1.0,0.0), which is a zonal

flow. Next, we consider j� x�1 þ x02 þ x001j. This involves sum

of two unstable modes and one stable mode. For k0y ¼ 0,

x02 ¼ �ivk04, following Eq. (8). For k0y ¼ ky, x001 ¼ �i�. The

scan over k0 is shown in Fig. 12(b). Again the minimum lies

near k0y ¼ 0:2 which represents coupling to a zonal flow. The

exact minimum value of the frequency mismatch is 0.0016 at

k0 ¼ (0.04,0.24). This is not a zonal mode coupling but close to

it. The frequency mismatch for the mode k0 ¼ (0.0,0.2) is 0.01.

We can also combine two stable modes and one unstable

mode, j�x�1 þ x02 þ x002j. If k0y ¼ 0, then x02 ¼ �ivk04. If

k0y ¼ ky, then x002 ¼ �ivk004. This shows minimum frequency

mismatch for a range of k0y going from 0.0 to 0.2, as displayed

in Fig. 12(c). The minimum value is 0.0007 at k0 ¼ (�0.2,0.0)

and k0 ¼ (0.12,0.20). These observations show that the fre-

quency mismatch is minimum for triads involving a zonal field

or modes close to a zonal wavenumber.

The linear frequency mismatch is only part of the corre-

lation time of triplet correlations, except in weak turbulence

situations where the nonlinear frequencies are negligible.

We now consider the frequency mismatch with the nonlinear

frequencies Dxj. The nonlinear frequencies can be calcu-

lated from the closure (see, for example, Ref. 21), but we opt

here to extract them directly from simulation data as done in

Ref. 22. For each eigenmode for each wavenumber, the fre-

quency spectrum is calculated. A Lorentzian can be fitted to

this frequency spectrum. The position of the peak of the Lor-

entzian gives the real part of x̂ ¼ xþ Dx, whereas its width

gives the imaginary part. The sign of the imaginary part is

chosen depending on whether it is an unstable or stable

mode. In this way, the nonlinearly broadened frequencies are

calculated and used instead of the linear frequencies for cal-

culation of frequency matching.

We again consider the three cases done for the linear

eigenfrequencies. For j�x�1þx01þx001�Dx�1þDx01þDx001j,
a similar scan is done in k0 with k again chosen as

(�0.08,0.2). The frequency sum is plotted against k0y for k0x¼0

in Fig. 13(a). The minimum value is 0.083 at k0y¼0:12. How-

ever, this is not a triad with a zonal mode. For j�x�1þx02þ
x001�Dx�1 þDx02þDx001j, the result is similar to the linear

phase calculation. As shown in Fig. 13(b), the minimum fre-

quency mismatch occurs again at k0y¼0:2, and its value is

0.029. This is a coupling with a zonal mode (at k–k0) and a sta-

ble mode (at k0), and its phase mismatch is less than half of the

minimum mismatch for j�x�1þx01þx001�Dx�1þDx01
þDx001j. This shows that the mismatch is smaller for triads that

involve one zonal mode, one unstable, and one stable mode,

compared to one zonal mode and two unstable modes. For

j�x�1þx02þx002�Dx�1þDx02þDx002j, the result is shown in

Fig. 13(c). Using only linear phases, this quantity showed min-

imum mismatch for triads involving zonal modes as well as a

range of non-zonal triads between k0y¼0:0 and k0y¼0:2. But

using the nonlinear phases, we see minimum mismatch only

for triads involving zonal modes, i.e., at k0y¼0:0 where the

mismatch is 0.003 and at k0y¼0:2, where the mismatch is 0.03.

These results show that the frequency mismatch is min-

imum for triads involving an unstable mode, a stable mode,

and a zonal mode. Such triads are the dominant nonlinear

coupling terms, leading to saturation. Moreover, as stated

before, the minimum value of the frequency mismatch

scales with �, the zonal flow damping. This is because the

flow damping rate (times i) is the zonal mode frequency in

the linear frequency mismatch. This is displayed in Table I,

which shows that the frequency mismatch of a triad con-

taining an unstable mode, a stable mode, and a zonal flow

scales with the zonal flow damping rate. However, we can

also consider zonal mode triads in which the pressure

damping is used for the zonal mode frequency. The pres-

sure damping is vk4 so the triads would become j� x�1 þ x02
�ivk4j. The same cancellation occurs as explained above

and a zonal mode triad can be approximated as vk4. Since v
is of the order of � and k < 1, the zonal pressure triads

would also show a very small value of the frequency sum

just like the zonal flow triads, indicating minimum fre-

quency mismatch. As a result, low frequency mismatch

does not explain why zonal flow triads are more important

than zonal pressure triads.
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FIG. 12. The frequency sum using linear frequencies, j� x�i ðkÞ þxjðk0Þ þ xlðk � k0Þj for k¼ (�0.08,0.2).
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B. Coupling coefficients

We examine now the coupling coefficients in the triplet

nonlinear terms of the energy equations. We have already

identified the coupling coefficient in N12F, prior to discussing

in detail its phase. We consider other triplet terms in the

evolution equations for the energies ð1þ k2 þ jR1j2Þ
jb1j2; ð1þ k2 þ jR2j2Þjb2j2; jpkj2, and ðdþ k2Þj/kj2. The

coupling coefficient in each triplet term is equal to the prod-

uct of either 1þ k2 þ jRij2 (for non-zonal modes) or unity

(for zonal modes) and a corresponding coupling coefficient

from the eigenmode evolution equations, Eqs. (11)–(13).

Each coupling coefficient in Eq. (11) contains a factor

1=ðR1 � R2Þ. For long wavelengths (k2 � 1), ðR1 � R2Þ
� �2i½ð1þ gÞ=��1=2

, independent of k. Also, for long wave-

lengths, the eigenvector magnitudes jR1j; jR2j lie within the

range of 6–7 and they vary weakly with k. Thus, the factors

ð1þ k2 þ jRij2Þ are roughly constant. The remaining part of

the coupling coefficients is strongly dependent on k, and the

power of k indicates magnitude, with smaller powers repre-

senting stronger coupling. In analyzing the power, we do not

distinguish between k and k0, but treat both as comparably

smaller than unity. The following wavenumber dependence

is found for the coupling coefficients in the evolution equa-

tions of the unstable and stable modes [Eq. (11)]:

Clmnðor NlmnÞ 	 k2;
ClFnðor NlFnÞ 	 ClmFðor NlmFÞ 	 k;
ClPnðor NlPnÞ 	 ClmPðor NlmPÞ 	 k2;

(24)

where l, m, n¼ 1 or 2. The strongest coupling coefficients

are with the zonal flows (	k). But this holds for both the

ETG and ITG cases. The coupling coefficients in the evolu-

tion equation of the zonal pressure [Eq. (13)] are

CPmnðor NPmnÞ 	 k2: (25)

The coupling coefficients in the evolution equation of the

zonal flow [Eq. (12)] are

CFmnðor NFmnÞ 	
k5

dþ k2
: (26)

This shows that the coupling coefficients for the zonal flows

are stronger for the ITG case (	k3) compared to the ETG

case ð	k5Þ. This is part of the reason why zonal flows are

excited to a higher level in the ITG case. However, as

explained above [Eq. (24)], the unstable mode coupling with

zonal flows is stronger than its coupling with other modes

for both ETG and ITG cases. Hence, this alone cannot

explain the difference between the two cases. Consequently,

we must consider relative amplitude information, which also

contributes to the magnitude of the nonlinear transfer.

C. Amplitude of zonal modes

The strength of a triad also depends on the amplitudes

of the three fields in it. We compare the zonal pressure and

zonal flow amplitudes in the ETG and ITG cases. The energy

level of the zonal flow and zonal pressure averaged over the

saturated state are provided in Table II. The level of zonal

pressure is more than zonal flow in both cases. In the ETG

case, the zonal flow is smaller than zonal pressure by a factor

of 15. However, in the ITG case, the zonal flow is only 3

times smaller than the zonal pressure. This is possibly due to

the fact that the nonlinear coupling coefficients of the zonal

flow field are stronger in ITG case compared to ETG case.

The three main points of this section can be summarized

as follows. (1) Triplet frequency matching favors triads that

include a zonal mode, an unstable mode, and a stable mode,

in both ETG and ITG. (2) Coupling coefficients in the unsta-

ble mode energy evolution equation favor zonal flow triads

over zonal pressure triads, in both ETG and ITG. (3)
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FIG. 13. The frequency sum using the nonlinear frequencies, j� x�i ðkÞ þ xjðk0Þ þxlðk � k0Þ � Dx�i ðkÞ þ Dxjðk0Þ þ Dxlðk � k0Þj for k¼ (�0.08,0.2).

TABLE I. Frequency sum for k¼ (�0.08,0.2) and k0 ¼ (0.0,0.2).

� j�x�1ðkÞ þ x2ðk0Þ þ x1ðk � k0Þj

0.01 0.0104

0.02 0.0203

0.05 0.0503
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Amplitude favors zonal pressure triads over zonal flow triads

in ETG but gives relatively equal weightage to both in ITG.

These three facts combined together explain why in ITG the

saturation happens with a triad involving the unstable mode,

a zonal flow, and a stable mode, as shown explicitly in

Sec. III.

V. CONCLUSIONS

The interaction of zonal flows with ITG turbulence

involves damped modes, making the process different from

prior descriptions. We show that zonal flows mediate energy

transfer from the unstable mode to a damped mode in the

large-scale wavenumber range of the instability. Direct

energy transfer to damped modes without zonal-flow media-

tion is less efficient, and when zonal flows are artificially

removed, it requires higher amplitudes to match the energy

injection rate of the instability.

After an initial transient phase in which zonal flows and

the damped mode are each driven by beating wavenumbers

of the unstable mode, the dominant energy transfer is

through a 3-wave interaction between the unstable mode,

the zonal flow, and the stable mode. Of the net energy trans-

ferred from the unstable mode, almost all (more than 99%)

ends up in the stable mode, where it is dissipated. The very

small amount of energy that ends up in the zonal flow (less

than 1%) is balanced by the small zonal flow damping. The

triplet interaction of an unstable mode, a zonal flow, and a

stable mode forms the dominant energy transfer channel

through a combination of three factors. Its three-wave non-

linear frequency mismatch is minimum, leading to the larg-

est nonlinear interaction time. It has the largest coupling

coefficient. This triplet is also enhanced in ITG relative to

ETG by a larger zonal flow amplitude and a smaller zonal

pressure amplitude.

This process deviates from the standard picture of zonal

flow effects in ITG turbulence in several ways. Saturation is

achieved at low k through the damped mode, which has not

been considered in the standard picture. With the damped

mode, the amount of energy dissipated at high k is not large

nor is the amount of energy transferred to high k. Conse-

quently zonal flow shear, frequently invoked to explain the

effect of zonal flows on turbulence, while an active process,

is not a significant player in the saturation or energy transfer

physics in the simulations described here. The ratio of

energy transferred to high k relative to energy dissipated at

low k may vary with other models. Zonal-flow drive in the

steady state is dominated by the triad of the unstable mode,

the zonal flow, and the damped mode. Descriptions of zonal

flow excitation that do not include damped modes miss the

dominant saturation process.

There is considerable evidence that the processes

described here for a reduced fluid model also operate in

gyrokinetic models of ITG turbulence. The primary differ-

ence is that instead of a single damped mode, there are many

damped modes.3 However, it remains true that saturation is

caused by damped modes in the same wavenumber range as

the instability, that nonlinear transfer to these modes domi-

nates transfer to high k, and that zonal flows participate in

the three-wave interactions that take instability energy to the

damped modes.23 The interaction of zonal flows and damped

modes in gyrokinetics will be described in detail elsewhere.

One unexpected result from gyrokinetics is that the strongest

damped mode excited is a tearing parity mode that makes

the magnetic field stochastic and causes magnetic-fluctuation

induced electron thermal transport.23,24 This mode is excited

by the same triad coupling of an unstable mode, a zonal

flow, and a stable mode as described in this paper. Hence

while mediating a reduction of ion channel transport by low-

ering the fluctuation level, the zonal flow mediates an

enhancement of electron channel transport. This is not an

optimal situation for confinement. However, the role of zonal

flows in mediating energy transfer to damped modes raises the

intriguing possibility that it may be possible to externally manip-

ulate the dominant energy transfer through fluctuations other

than zonal flows and thereby control to which type of damped

mode most of the energy flows. This could then be used to select

for a desirable or optimal set of transport properties.
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APPENDIX: NOTATIONS, EXPRESSIONS, AND
SYMBOLS

The nonlinear coupling coefficients for Eq. (11) are

Clmn ¼
ð�1Þl�1

ðR1 � R2Þ
ðk0 � ẑ � kÞ

2
R0m � R00n þ

R3�lðk002 � k02Þ
ð1þ k2Þ

� �
;

(A1)

ClFn ¼
ð�1Þl�1

ðR1 � R2Þ
ð�ikyÞ

2
R00n �

R3�lðk002 � k02Þ
ð1þ k2Þ

� �
; (A2)

ClPn ¼
ð�1Þl�1

ðR1 � R2Þ
ð�k0xkyÞ

2
; (A3)

ClmF ¼
ð�1Þl�1

ðR1 � R2Þ
ð�ik0yÞ

2
R0m þ

R3�lðk002 � k02Þ
ð1þ k2Þ

� �
; (A4)

ClmP ¼
ð�1Þl�1

ðR1 � R2Þ
ð�k0yk00xÞ

2
: (A5)

The nonlinear coupling coefficients for the zonal flow equa-

tion [Eq. (12)] are

TABLE II. Zonal field energy levels.

ETG ITG

hp2
Zi 1:17� 104 5:75� 102

hv2
Zi 5:60� 101 6:10� 101
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CFmn ¼
�i

2

k0yk2
xðk002 � k02Þ
ðdþ k2

xÞ
: (A6)

The nonlinear coupling coefficients for the zonal pressure

equation [Eq. (13)] are

CPmn ¼
ðk0ykxÞ

2
ðR0m � R00nÞ: (A7)

Here l, m, n¼ 1 or 2 and k00 ¼ k� k0; R1;2 ¼
R1;2ðkÞ; R01;2 ¼ R1;2ðk0Þ and R001;2 ¼ R1;2ðk00Þ. The terms in

Eq. (15) are

Qu ¼
X
ky 6¼0

�2kyð1þ gþ �ÞImðR1Þjb1j2; (A8)

Qs ¼
X
ky 6¼0

�2kyð1þ gþ �ÞImðR2Þjb2j2; (A9)

Qus ¼
X
ky 6¼0

�2kyð1þ gþ �ÞImðR1b1b
�
2 þ R2b

�
1b2Þ; (A10)

D ¼
X
ky 6¼0

�2vk4jpkj2 � 2�k2j/kj2; (A11)

Dzonal ¼
X
ky¼0

�2vk4jpkj2 � 2�k2j/kj2: (A12)

The three wave coupling terms in Eq. (17) are

N1mn ¼
X
ky 6¼0

A Re
X

k0y 6¼0;ky

C1mnb
�
1b
0
mb00n

2
4

3
5; (A13)

N1Pn ¼
X
ky 6¼0

A Re
X
k0y¼0

C1Pnb
�
1p0zb

00
n

2
4

3
5; (A14)

N1mP ¼
X
ky 6¼0

A Re
X
k0y¼ky

C1mPb�1b
0
mp00z

2
4

3
5; (A15)

N1Fn ¼
X
ky 6¼0

A Re
X
k0y¼0

C1Fnb
�
1v
0
zb
00
n

2
4

3
5; (A16)

N1mF ¼
X
ky 6¼0

A Re
X
k0y¼ky

C1mFb�1b
0
mv00z

2
4

3
5; (A17)

where A ¼ 2ð1þ k2 þ jR1j2Þ. The three wave coupling

terms in the zonal field energy Eqs. (18) and (19) are

NPmn ¼
X
ky¼0

2Re
X
k0y 6¼0

CPmnp�z b
0
mb00n

2
4

3
5; (A18)

NFmn ¼
X
ky¼0

2Re
X
k0y 6¼0

CFmnv
�
z b
0
mb00n

2
4

3
5; (A19)

where in Eqs. (A13)–(A19), m, n¼ 1 or 2.
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